現(xiàn)代工業(yè)的發(fā)展,一方面加大對能源的需求,引發(fā)能源危機;另一方面在常規(guī)能源的使用中釋放出大量的二氧化碳氣體,導致全球性的“溫室效應”。為此各國力圖擺脫對常規(guī)能 源的依賴,加速發(fā)展可再生能源。作為最理想的可再生能源,太陽能具有“取之不盡,用之不竭”的特點,而利用太陽能發(fā)電具有環(huán)保等優(yōu)點,而且不必考慮其安全性問題。所以在發(fā)達國家得到了高度重視,歐洲聯(lián)盟國家計劃在2010年太陽能光電轉(zhuǎn)換的電力占所有總電力的1.5%,美國啟動了“百萬屋頂”計劃。在能源短缺,環(huán)境保護問題日益嚴重的我國,低成本高效率地利用太陽能尤為重要。
太陽能電池就是利用光伏效應將太陽能直接轉(zhuǎn)換為電能的一種裝置。常規(guī)太陽電池簡單裝置如圖1所示。當N型和P型兩種不同型號的半導體材料接觸后,由于擴散和漂移作用,在界面處形成由P型指向N型的內(nèi)建電場。當光照在太陽電池的表面后,能量大于禁帶寬度的光子便激發(fā)出電子和空穴對,這些非平衡的少數(shù)載流子在內(nèi)電場的作用下分離開,在電池的上下兩極累積,這樣電池便可以給外界負載提供電流。
從本世紀70年代中期開始了地面用太陽電池商品化以來,晶體硅就作為基本的電池材料占據(jù)著統(tǒng)治地位,而且可以確信這種狀況在今后20年中不會發(fā)生根本的轉(zhuǎn)變。以晶體硅材料制備的太陽能電池主要包括:單晶硅太陽電池,鑄造多晶硅太陽能電池,非晶硅太陽能電池和薄膜晶體硅電池。單晶硅電池具有電池轉(zhuǎn)換效率高,穩(wěn)定性好,但是成本較高;非晶硅太陽電池則具有生產(chǎn)效率高,成本低廉,但是轉(zhuǎn)換效率較低,而且效率衰減得比較厲害;鑄造多晶硅太陽能電池則具有穩(wěn)定得轉(zhuǎn)換的效率,而且性能價格比最高;薄膜晶體硅太陽能電池則現(xiàn)在還只能處在研發(fā)階段。目前,鑄造多晶硅太陽能電池已經(jīng)取代直拉單晶硅成為最主要的光伏材料。但是鑄造多晶硅太陽能電池的轉(zhuǎn)換效率略低于直拉單晶硅太陽能電池,材料中的各種缺陷,如晶界、位錯、微缺陷,和材料中的雜質(zhì)碳和氧,以及工藝過程中玷污的過渡族金屬被認為是電池轉(zhuǎn)換效率較低的關鍵原因,因此關于鑄造多晶硅中缺陷和雜質(zhì)規(guī)律的研究,以及工藝中采用合適的吸雜,鈍化工藝是進一步提高鑄造多晶硅電池的關鍵。另外,尋找適合鑄造多晶硅表面織構(gòu)化的濕化學腐蝕方法也是目前低成本制備高效率電池的重要工藝。
從固體物理學上講,硅材料并不是最理想的光伏材料,這主要是因為硅是間接能帶半導體材料,其光吸收系數(shù)較低,所以研究其他光伏材料成為一種趨勢。其中,碲化鎘(CdTe)和銅銦硒(CuInSe2)被認識是兩種非常有前途的光